C3D10060A-Silicon Carbide Schottky Diode Z-REC ${ }^{\text {tm }}$ Rectifier

$$
\begin{array}{ll}
\mathbf{V}_{\mathbf{R R M}} & =600 \mathrm{~V} \\
\mathbf{I}_{\mathbf{F}} & =10 \mathrm{~A} \\
\left(\mathbf{T}_{\mathbf{c}}<\right. & \left.150^{\circ}\right) \\
\mathbf{Q}_{\mathbf{c}} & =25 \mathrm{nC}
\end{array}
$$

Features

- 600-Volt Schottky Rectifier
- Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on V_{F}

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Applications

- Switch Mode Power Supplies
- Power Factor Correction
- Typical PFC $\mathrm{P}_{\text {out }}$: 1000W-2000W
- Motor Drives
- Typical Power : 3HP-5HP

Package

TO-220-2

Maximum Ratings

Symbol	Parameter	Value	Unit	Test Conditions	Note
$V_{\text {RRM }}$	Repetitive Peak Reverse Voltage	600	V		
$V_{\text {RSM }}$	Surge Peak Reverse Voltage	600	V		
$V_{\text {DC }}$	DC Blocking Voltage	600	V		
I_{F}	Continuous Forward Current	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	A	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}<150^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}<140^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Forward Surge Current	$\begin{aligned} & 67 \\ & 44 \end{aligned}$	A	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave, $\mathrm{D}=0.3$ $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave, $\mathrm{D}=0.3$	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	$\begin{aligned} & 90 \\ & 71 \end{aligned}$	A	$T_{c}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave, $\mathrm{D}=0.3$ $T_{c}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave, $\mathrm{D}=0.3$	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	250	A	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$, Pulse	
$\mathrm{P}_{\text {tot }}$	Power Dissipation	$\begin{gathered} 136.3 \\ 59 \end{gathered}$	W	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=110^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Operating Junction and Storage Temperature	$\begin{aligned} & -55 \text { to } \\ & +175 \end{aligned}$	${ }^{\circ} \mathrm{C}$		
	TO-220 Mounting Torque	$\begin{gathered} 1 \\ 8.8 \end{gathered}$	$\underset{\mathrm{lbf-in}}{\mathrm{Nm}}$	M3 Screw 6-32 Screw	

Electrical Characteristics

Symbol	Parameter	Tур.	Max.	Unit	Test Conditions	Note
V_{F}	Forward Voltage	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{aligned}$	
I_{R}	Reverse Current	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{gathered} 50 \\ 200 \end{gathered}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=600 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{aligned}$	
Q_{C}	Total Capacitive Charge	25		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \\ & \mathrm{di} / \mathrm{d} t=500 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	
C	Total Capacitance	$\begin{gathered} 480 \\ 50 \\ 42 \end{gathered}$		pF	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=200 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	

Note:

1. This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Typ.	Unit
$R_{\text {өлс }}$	Thermal Resistance from Junction to Case	1.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Typical Performance

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

Typical Performance

Figure 3. Current Derating

Figure 4. Capacitance vs. Reverse Voltage

Figure 5. Transient Thermal Impedance

Typical Performance

Figure 6. Power Derating

Package Dimensions

Package TO-220-2

PIN 1 O

	POS	Inches		Millimeters	
		Min	Max	Min	Max
	A	. 381	. 410	9.677	10.414
	B	.235	. 255	5.969	6.477
	C	. 100	. 120	2.540	3.048
	D	. 223	. 337	5.664	8.560
	E	. 590	. 615	14.986	15.621
$\left.\vec{m}\right\|^{\leftarrow X}$	F	. 143	. 153	3.632	3.886
	G	1.105	1.147	28.067	29.134
Y	H	. 500	. 550	12.700	13.970
	J	R 0.197		R 0.197	
	L	. 025	. 036	. 635	. 914
	M	. 045	. 055	1.143	1.397
	N	. 195	. 205	4.953	5.207
	P	. 165	. 185	4.191	4.699
	Q	. 048	. 054	1.219	1.372
	S	3°	6°	3°	6°
	T	3°	6°	3°	6°
	U	3°	6°	3°	6°
	V	. 094	. 110	2.388	2.794
	W	. 014	. 025	. 356	. 635
	X	3°	$5.5{ }^{\circ}$	3°	$5.5{ }^{\circ}$
	Y	. 385	. 410	9.779	10.414
	Z	. 130	.150	3.302	3.810

NOTE:

1. Dimension L, M, W apply for Solder Dip Finish

Recommended Solder Pad Layout

TO-220-2

Part Number	Package	Marking
C3D10060A	TO-220-2	C3D10060

Diode Model

$$
\begin{gathered}
\mathrm{Vf}_{T}=\mathrm{V}_{T}+I f * \mathrm{R}_{T} \\
\mathrm{~V}_{T}=0.98+\left(\mathrm{T}_{3} *-1.6 * 10^{-3}\right) \\
\mathrm{R}_{\mathrm{T}}=0.04+\left(\mathrm{T}_{3} * 0.522^{*} 10^{-3}\right)
\end{gathered}
$$

Note: $\mathbf{T}_{\mathbf{j}}=$ Diode Junction Temperature In Degrees Celsius

[^0]
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Cree, Inc.:
C3D10060A

[^0]: "The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoWS), as amended through April $21,2006$.

